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Abstracts (Theory)

A Glimm type functional for Relaxation

Stefano Bianchini

For the simplest relaxation scheme
{

f−
t − f−

x = 1
2 (f+ − f−)

f+
t + f+

x = 1
2 (f− − f+)

we introduce a decaying functional ϕ which measures interaction of waves. The
functional is not local in time.
We hope that this functional may help in proving convergence of general schemes

Fα
t + αFα

x = Mα(u) − Fα

u =

∫

Fαdµ(α)

under the assumption DMα DMβ = DMβ DMα and Fα ∈ <n.

Order preserving solutions to the linear wave equation and application
to a Chaplygin-Born-Infeld MHD-like system

Yann Brenier

A fairly well known model in gas dynamics is the so-called Chaplygin system,
for which the sound speed has the unusual property of decaying to zero as the
density increases to infinity. This system, which allows mass concentrations in fi-
nite time, has been advertised as a possible model for dark energy [GKMP], [Gib],
and is also related to the Born-Infeld non linear theory [BI], [BDLL], [Br], [Se],
for the electromagnetic field, as well as to the shallow water MHD theory [Gil]. In
one space dimension, the Chaplygin system is nothing but the (formal) Eulerian
formulation of the linear wave equation. It is therefore easily integrated, as long as
the solutions of the wave equation are smooth and strictly monotonic (i.e. order
preserving). The loss of monotonicity exactly corresponds to the blow up of the
density field for the Chaplygin system The extension of solutions beyond these
singularities cannot be provided any longer by solutions of the wave equations
without corrections. In this talk, an order preserving modification of the wave
equation is introduced which leads to a well posed reformulation (in Lagrangian
coordinates) of a two dimensional system, that we call the Chaplygin-Born-Infeld
(CBI) system, which includes the one-dimensional Chaplygin system as a particu-
lar case. Existence, uniqueness and stability with respect to initial conditions are
established, through the analysis of a suitable order preserving numerical scheme.
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Multidimensional Transonic Shocks in Unbounded Domains

Gui-Qiang Chen

(joint work with Mikhail Feldman)

In this Note, we report some of recent developments in the study of multidimen-
sional transonic shocks since our first paper Chen-Feldman [1] on the topic for the
Euler equations for steady potential fluid flow. The Euler equations, consisting of
the conservation law of mass and the Bernoulli law for velocity, can be written as a
second order nonlinear equation of mixed elliptic-hyperbolic type for the velocity
potential ϕ:

(1) div (ρ(|∇ϕ|2)∇ϕ) = 0,

where the density ρ(q2) =
(

1− θq2
)

1
2θ and θ = γ−1

2 > 0 with the adiabatic expo-
nent γ > 1. The transonic shock problem can be formulated into a free boundary
problem: The free boundary is the location of the multidimensional transonic
shock which divides two regions of C2,α flow, and the equation is hyperbolic in
the upstream region where the C2,α perturbed flow is supersonic.

We have developed two nonlinear approaches to deal with such free bound-
ary problems in order to solve the transonic shock problems: one is the iteration
method developed in Chen-Feldman [1, 2], which can be employed to solve physical
problems with complicated boundaries as long as the corresponding fixed bound-
ary elliptic problems can be solved; and the other is the partial hodograph method
in Chen-Feldman [3], which converts the free boundary problems into the corre-
sponding fixed boundary problems but requires special geometric forms of the
boundaries in the problems.

Our results indicate that there exists a unique stable solution of the free bound-
ary problem such that the equation is always elliptic in the downstream region and
the free boundary is C2,α, provided that the hyperbolic phase is close in C2,α to a
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uniform flow. The approaches have successfully been applied to solving the tran-
sonic shock problems in infinite channels [2], infinite nozzles [4], and other related
problems [5]. As a concrete example, we describe the results for the infinite nozzle
problem in [4] in more detail below.

Let (x′, xn) be the coordinates in Rn, where xn ∈ R and x′ = (x1, . . . , xn−1) ∈
Rn−1. Let q−0 ∈

(

c, 1/
√
θ
)

and ϕ−
0 (x) := q−0 xn with the sonic speed c. Then

ϕ−
0 (x) is a supersonic solution in Ω, and there exists a unique q+

0 ∈ (0, c) such that
ρ

(

(q+0 )2
)

q+0 = ρ
(

(q−0 )2
)

q−0 . Thus, the function

(2) ϕ0(x) =

{

q−0 xn, x ∈ Ω−
0 := Ω ∩ {x : xn < 0},

q+0 xn, x ∈ Ω+
0 := Ω ∩ {x : xn > 0}

is a plane transonic shock solution in Ω, Ω+
0 and Ω−

0 are its subsonic and supersonic
regions, respectively, and S = {xn = 0} is a transonic shock.

Consider an infinite nozzle Ω which is close in C3,α to an infinite cylinder with
arbitrary smooth cross-section: C = Λ × (−a,∞) with a > 0, where the cross-
section Λ ⊂ Rn−1 is an open bounded connected set with a C3,α boundary. Such
nozzles especially include the slowly varying Laval nozzle. The nozzle can generally
be expressed as Ω = Ψ(C) with Ψ : Rn → Rn, which is invertible and satisfies

(3) ‖Ψ− I‖3,α,Rn ≤ σ

for sufficiently small σ > 0, where ‖ · ‖m,α,D is the norm in the Hölder space

Cm,α(D) in the domain D. For concreteness, we also assume that there exists
L > 0 such that Ψ(x) = x for any x with xn > L. Note that our assumptions
imply that Ψ(∂C) = ∂Ω and ∂Ω = ∂oΩ ∪ ∂lΩ, with ∂lΩ := Ψ[∂Λ × (−a,∞)] and
∂oΩ := Ψ(Λ × {−a}).

Nozzle Problem. Given a supersonic upstream flow ϕ−(x) of (1)
in Ω1 := {−a < xn < 1}, which is a C2,α perturbation of ϕ−

0 (x)
for some α ∈ (0, 1):

(4) ‖ϕ− − ϕ−
0 ‖2,α,Ω1

≤ C0σ,

with σ > 0 small, for some constant C0, and satisfies ∂νϕ
− =

0 on ∂lΩ1, find a transonic shock solution ϕ(x) in Ω such that,
denoting by Ω+ := {x ∈ Ω : |Dϕ(x)| < c}, Ω− := Ω \ Ω+, and
S := ∂Ω+ \ ∂Ω the subsonic and supersonic regions and the shock
surface of ϕ(x), we have Ω− ⊂ Ω1, ϕ = ϕ− in Ω−, and

ϕ = ϕ−, ϕν = ϕ−
ν on ∂oΩ,(5)

∂νϕ = 0 on ∂lΩ,(6)

‖ϕ− ωxn‖C(Ω∩{xn>R}) → 0 as R → +∞, for some ω ∈ (0, c).(7)

The supersonic upstream flow ϕ−(x) satisfying (4) can be constructed directly
from the standard local existence of smooth solutions for the initial boundary value
problem (5)–(6) for second order quasilinear hyperbolic equations when (ϕ−, ϕ−

xn
)
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on ∂oΩ is sufficiently smooth and close to (ϕ−
0 ,−q−0 ) with magnitude σ as σ is

sufficiently small (also in (3)).

Theorem. Let ϕ0(x) be the transonic shock solution (2). Then

there exist σ0 > 0, Ĉ , and C depending only on n, γ, q+0 , Λ, Ψ,
and L, such that, for every σ ∈ (0, σ0) and any supersonic solution
ϕ−(x) of (1) satisfying the conditions stated above, there exists a

global solution ϕ ∈ C0,1(Ω) ∩ C2,α(Ω
+
) of the Nozzle Problem

satisfying ‖Dϕ− q+0 en‖0;α;Ω+ ≤ Ĉσ and the following properties:
(i). The constant ω in (7) must be q+: ω = q+, where q+ is the

unique solution in the interval (0, c) of the equation

ρ((q+)2)q+ = Q+ :=
1

|Λ|

∫

∂oΩ

ρ(|Dϕ−|2)Dϕ− · ν dS.

Thus ϕ(x) satisfies ‖ϕ − q+xn‖C1(Ω∩{xn>R}) → 0 as R → +∞,

and q+ satisfies |q+ − q+0 | ≤ Cσ.
(ii). The subsonic region Ω+(ϕ) := {x ∈ Ω : |Dϕ(x)| < c} is

of the form:

Ω+(ϕ) = {xn > f(x′)} ∩ Ω with f ∈ C2,α(Rn−1),

where f satisfies ‖f‖2,α,Rn−1 ≤ Cσ. Moreover, the surface S =
{(x′, f(x′)) : x′ ∈ Rn−1} ∩ Ω is orthogonal to ∂lΩ at every point
of their intersection.
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On the Existence of Weak Solutions for the Generalized
Camassa-Holm Equation

Giuseppe Maria Coclite

(joint work with Helge Holden and Kenneth H. Karlsen)

In recent years the so-called Camassa-Holm Equation [1] has caught a great
deal of attention. It is a nonlinear dispersive wave equation that takes the form

(1)
∂u

∂t
− ∂3u

∂t∂x2
+ 3u

∂u

∂x
= 2

∂u

∂x

∂2u

∂x2
+ u

∂3u

∂x3
, t > 0, x ∈ R.

This equation models the propagation of unidirectional shallow water waves on a
flat bottom, and u(t, x) represents the fluid velocity at time t in the horizontal
direction x. The Camassa-Holm Equation possesses a bi-Hamiltonian structure
(and thus an infinite number of conservation laws) and is completely integrable
[1]. Moreover, it has an infinite number of solitary waves called peakons (due to the
discontinuity of their first derivatives at the wave peak): u(t, x) = ce−|x−ct|, c ∈ R,
[1]. ¿From a mathematical point of view, the Camassa-Holm Equation is well
studied. Local well-posedness results are proved in [2]. It is also known that
there exist global solutions for a particular class of initial data and also solutions
that blow up in finite time for a large class of initial data [2, 4] (here blow up
means that the slope of the solution becomes unbounded while the solution itself
stays bounded). We recall that existence and uniqueness results for global weak
solutions of (1) have been proved by Constantin and Escher [3], Constantin and
Molinet [5], and Xin and Zhang [8, 9], see also Danchin [6].

Herein we are interested in the Cauchy Problem for the nonlinear equation

(2)
∂u

∂t
− ∂3u

∂t∂x2
+

∂

∂x

(g(u)

2

)

= 2
∂u

∂x

∂2u

∂x2
+ u

∂3u

∂x3
, t > 0, x ∈ R,

where the function g : R → R is given. Observe that if g(u) = 3u2, then (2) is the
classical Camassa-Holm Equation. We coin (2) the Generalized Camassa-Holm
Equation.

¿From a mathematical point of view the Generalized Camassa-Holm Equa-
tion (2) is much less studied than (1). Recently, Yin [10] has proved local well-
posedness, global well-posedness for a particular class of initial data, and in par-
ticular that smooth solutions blow up in finite time (with a precise estimate of the
blow-up time) for large class of initial data. Let us also mention that Lopes [7]
has proved stability of solitary waves for the Generalized Camassa-Holm Equation
(2).

Here we look for the existence of a global weak solution to (2) for any initial
function u0 belonging to H1(R). In doing so we follow closely the approach of Xin
and Zhang [8] for the Camassa-Holm Equation (1). Let us be more precise about
our results. We shall assume

(3) g ∈ Liploc(R), g(0) = 0, u(0, ·) = u0 ∈ H1(R
)

.



924 Oberwolfach Report 18/2004

Define h(ξ)
.
=

(

g(ξ)− ξ2
)

/2 for ξ ∈ R. Formally, the equation (2) is equivalent to
the elliptic-hyperbolic system

(4)
∂u

∂t
+ u

∂u

∂x
+
∂P

∂x
= 0, −∂

2P

∂x2
+ P = h(u) +

1

2

(∂u

∂x

)2

.

Moreover, since e−|x|/2 is the Green’s function of the operator −∂2
xx + 1, the

equation (2) is equivalent to the integro-differential system

∂u

∂t
+ u

∂u

∂x
+
∂P

∂x
= 0, P (t, x) =

1

2

∫

R

e−|x−y|
(

h(u(t, y)) +
1

2

(∂u

∂x
(t, y)

)2)

dy.

Motivated by this, we shall use the following definition of weak solution.

Definition. We call u : R+ ×R → R a weak solution of the Cauchy Problem for
(2) if

i) u ∈ C(R+ ×R) ∩ L∞
(

R∗
+;H1(R)

)

;
ii) u satisfies (4) in the sense of distributions;
iii) u(0, x) = u0(x), for every x ∈ R;
iv) ‖u(t, ·)‖H1(R) ≤ ‖u0‖H1(R), for each t > 0.

Our main results are collected in in the following theorem:

Theorem. Assume (3). Then there exists a weak solution u = u(t, x) to the
Cauchy Problem for (2). Moreover, the following hold

j) (Oleinik type Estimate) for every t ≥ 0 and x ∈ R,

∂u

∂x
(t, x) ≤ 2

t
+K1,

for some positive constant K1 depending only on ‖u0‖H1(R);
jj) (Higher Integrability) there results

∂u

∂x
∈ Lp

loc(R+ ×R), for any 1 ≤ p < 3.
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Minimal entropy conditions for Burgers equation

Camillo De Lellis

(joint work with Felix Otto, Michael Westdickenberg)

We consider strictly convex, 1–d scalar conservation laws. We show that a single
strictly convex entropy is sufficient to characterize a Kruzhkov solution. The proof
uses the concept of viscosity solution for the related Hamilton-Jacobi equation.

We also show that it is sufficient to impose that the entropy production measure
ν is less or equal than a nonnegative measure µ such that

lim
r↓0

µ
(

Br(t, x)
)

r
= 0 for every (t, x) ∈ Ω.

This generalization is important since it allows for the derivation of new estimates
for the Kuramoto-Shivashinsky equation, see [1].
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Asymptotic Stability of Riemann Solutions for a Class of Multi-D
Viscous Systems of Conservation Laws

Hermano Frid

We prove the asymptotic stability of two-states nonplanar Riemann solutions
under initial and viscous perturbations for a class of multidimensional systems of
conservation laws. The class considered here is constituted by those systems whose
flux-functions in different directions share a common complete system of Riemann
invariants, the level surfaces of which are hyperplanes. The latter are known as
Temple fluxes, after Temple [7]. In particular, we obtain the uniqueness of the
self-similar L∞ entropy solution of the two-states nonplanar Riemann problem.
The asymptotic stability to which the main result refers is in the sense of the
convergence as t → ∞ in L1

loc of the space of directions ξ = x/t. That is, the
solution u(t, x) of the perturbed problem satisfies

(1) u(t, tξ) → R(ξ), as t→ ∞, in L1
loc(<n),

where R(ξ) is the self-similar entropy solution of the corresponding two-states
nonplanar Riemann problem.
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Our analysis is motivated by the ideas developed in [1]. We first prove

(2) lim
T→∞

1

T

∫ T

0

|u(t, tξ) −R(ξ)| dt = 0, in L1
loc(<n).

An important aspect of (2) is its equivalence to the convergence in L1
loc(<n+1

+ )

of the scaling sequence {uT}, given by uT (t, x) = u(T t, Tx),
to R(x/t), when T → +∞. The latter is equivalent to the fact that, given any

sequence Tk → ∞, as k → ∞, one can find a subsequence, Tl = Tkl
→ ∞, as

l → ∞, such that uTl(t, x) → R(x/t) in L1
loc(<n+1

+ ) as l → ∞.
This fact is frequently useful when trying to prove (2).
Once (2) is proved, a standard procedure established in [1] is then used to

strengthen (2) into (1). This strengthening is similar to the ones encountered
in [2, 5].
Uniform boundedness of u(x, t), due to existence of bounded invariant regions,

plus existence of a strictly convex entropy give

lim
T→∞

1

T

∫ T

0

|∇xu(ξt, t)| dt = 0, a.e. ξ ∈ <n.

We recall that in the one-dimensional case the idea was (cf. [4], [1]) to integrate
the entropy inequality

(3) η(u)t + q(u)x ≤ η(u)xx,

in a region of the type

Ω±
ξ (T ) = {(x, t) : ±(x− ξt) > 0, 0 < t < T},

where + or − depends on whether η(uL) = 0 or η(uR) = 0, respectively. Integra-
tion by parts gives, respectively,

(4) lim sup
T→∞

± 1

T

∫ T

0

(−ξη + q)(u(ξt, t)) dt ≤ 0.

Defining, for g ∈ C(<m),

〈µT
ξ , g(u)〉 =

1

T

∫ T

0

g(u(ξt, t)) dt,

inequality (4) combined with properties of Temple systems eventually leads to

µT
ξ ⇀ δR(ξ), as T → ∞, a.e. ξ ∈ <,

which gives (1) in the 1D case. The latter is similar in spirit to the usual procedure
in the theory of compensated compactness, since the pioneering papers of Tartar
[6] and DiPerna [3], although here the probability measures have nothing to do
with Young measures.

In the multi-D case we try to adapt the above procedure, but the situation now
is quite more complicated, because of the geometry of the domains of integration.
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Low frequency stability of planar multi-D detonations

Helge Kristian Jenssen

(joint work with Greg Lyng & Mark Williams)

We use the classical normal mode approach of hydrodynamic stability theory to
define stability determinants (Evans functions) for multidimensional strong deto-
nations in three commonly studied models of combustion: the full reactive Navier-
Stokes (RNS) model, and the simplified Zeldovitch-von Neumann-Döring (ZND),
and Chapman-Jouget (CJ) models. The determinants are functions of frequencies
(λ, η), where λ is a complex variable dual to the time variable, and η ∈ R

d−1

is dual to the transverse spatial variables. The zeroes of these determinants in
<λ > 0 correspond to perturbations that grow exponentially with time.

The CJ determinant, ∆CJ (λ, η), turns out to be explicitly computable. The
RNS and ZND determinants are impossible to compute explicitly, but we are able
to compute their first-order low frequency expansions with an error term that
is uniformly small as <λ ↓ 0. Somewhat surprisingly, this computation yields
an Equivalence Theorem: the leading coefficient in the expansions of both the
RNS and ZND determinants is a constant multiple of ∆CJ . In this sense the low
frequency stability conditions for strong detonations in all three models are equiv-
alent. By computing ∆CJ we are able to give low frequency stability criteria valid
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for all three models in terms of the physical quantities: Mach number, Gruneisen
coefficient, compression ratio, and heat release. The Equivalence Theorem is a
step toward the rigorous theoretical justification of the CJ and ZND models as
approximations to the full RNS model.

Existence to solutions of a kinetic aerosol model

Christian Klingenberg

(joint work with P.E. Jabin)

We consider the coagulation model

ft +
p

m
.∇xf = Q(f)

where we have the particle density f(t, x,m, p) of particles with mass m ∈ R+,
momentum p ∈ R3, at time t > 0 and position x ∈ R3. For a general class of col-
lision operators Q we prove existence of solutions. Under some natural restriction
on the initial data we have existence without blowup of the solution.

For more details see [1] or contact one of the authors: klingenberg@mathematik.uni-
wuerzburg.de, Pierre-Emmanuel.Jabin@ens.fr .
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Boundary Values for Moment Equation

Ingo Müller

The moment equations of the kinetic theory of gases furnish a quasilinear hy-
perbolic system which is entirely explicit. Yet until recently their solution for
specific problems − even simple ones − was impossible, since boundary values for
higher moments cannot be imposed and controlled.

It is obvious that the gas itself has no such problem. Indeed, the temperature
field in a rarefied gas is quite reproducible even though it depends strongly on the
uncontrollable boundary values.

We suggest that those boundary values fluctuate rapidly with the thermal mo-
tion and that the values, which the gas reacts to, are mean values. With that
assumption the solutions of moment equations for boundary value problems be-
come unique and they agree well with solutions obtained by other methods, e.g.
molecular dynamics, kinetic schemes, or direct solutions of the Boltzmann equa-
tion.

The moment equations of the kinetic theory have been extrapolated to form
the basis of Extended Thermodynamics, a classical field theory appropriate for
the treatment of rarefied gases. The field equations are symmetric hyperbolic and
their number is chosen so as to achieve convergence of predictions.
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Structure of entropy solutions

Felix Otto

(joint work with C. De Lellis, M. Westdickenberg)

We show BV–structure without BV estimates for multi–d scalar conservation
laws with genuinely non–linear flux function. BV structure means that the group
set J is codimension 1 rectifiable and that blow–ups outside J are constant whereas
they are strongest shocks Hn−1 – a.e. on J . The proof involves typical arguments
from geometric measure theory and starts from the kinetic formulation. Key is the
classification of ”‘Split states”’ which denote those solutions of the kinetic equation
where entropy production measure factorizes : µ(dvdxdt) = h(dv) ν(dxdt).

Stability of space-periodic traveling waves

Denis Serre

Consider a system of conservation laws

(1) ut + f(u)x = uxx.

A traveling wave of velocity s is a solution of the form u = U(x − st). We are
interested in those traveling waves for which the profile U is periodic. These are
given by periodic solutions of the ODE

U ′′ = (f(U) − sU)′,

which can be integrated once as

U ′ = f(U) − sU − q.

We emphasize that the parameters s and q are not given a priori. The set P of
solutions is generically of dimension n+ 2 (n degrees of freedom for U(0), n for q,
one for each of s and the period, `, and n constraints U(`) = U(0)). If we make
the quotient by the translations, we obtain a manifold P̄ of dimension n+ 1.

It turns out that slow modulation theory of such periodic traveling waves, fol-
lowing [4] and [3], gives rise to a first-order system of conservation laws on the
manifold P̄ :

(2) vt + F (v)x = 0.



930 Oberwolfach Report 18/2004

Thus we end up with n + 1 conservation laws in n + 1 unknowns, instead of n.
The variables v consist in the average of U (n quantities, clearly unaffected by
translations), together with the frequency ω := 1/`. The fluxes F (v) are the
averages of the fluxes F (U), and ω times the velocity s.

Given one periodic traveling wave U0, we are interested in its spectral stability.
This is the weaker notion of stability, that tells that the spectrum of the linearized
operator

Lw := (wx − df(U0)w)x

lies in the left half-space <λ ≤ 0. Using a moving frame, we may always assume
that U0 is a standing wave, that is s(U0) = 0. It is not possible in general to deter-
mine explicitly this spectrum. However, Floquet’s theory tells that the spectrum
is essential, and the generalized eigenfunctions are periodic, up to a phase shift
θ ∈ [0, 2π). At a theoretical level, it can be encoded in a so-called Evans function
D(λ, θ), in the following way: The spectrum of L is the λ-projection of the zero
set of D. See [1] for the construction.

The large wavelength analysis consists in computing the leading term of D in
the Taylor expansion at the origin. Because of translational invariance, U ′ is a
periodic solution of Lw = 0. This shows that D(0, 0) = 0. Actually, the kernel
of L is isomorphic to the tangent space to P0 at U0 (the submanifold of traveling
waves of same period than U0), thus is of dimension n + 1. This translates into
the fact that D vanishes at order n+ 1 at the origin.

Our main theorem is that

D(λ, θ) = Γ det(λIn+1 − iθdF (v0)) +O
(

|λ|n+2 + |θ|n+2
)

,

where Γ is a non-zero (under a transversality condition) constant, and v0 is the
point of P̄ that corresponds to U0. This implies immediately the necessary condi-
tion for spectral stability, that (2) be hyperbolic.

These results complete those of Oh and Zumbrun [2], which applied, roughly
speaking, in the special case where all periodic traveling waves have the same
velocity.

The present work will appear in full details in Communications of Partial Dif-
ferential Equations.
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Decay of Solutions in Hyperbolic Systems of Conservation Laws with
General Flux

Konstantina Trivisa

(joint work with P.G. LeFloch)

Several Glimm-type functionals for (piecewise smooth) approximate solutions of
nonlinear hyperbolic systems have been introduced in recent years. In this work,
following a work by Baiti and Bressan [1], (see also Bressan [4]) on genuinely
nonlinear systems we provide a general framework to prove that such functionals
can be extended to general functions with bounded variation and we investigate
their lower semi-continuity properties with respect to the strong L1 topology. In
particular, our result applies to the functionals introduced by Iguchi-LeFloch [6]
and Liu-Yang [7] for systems with general flux-functions, as well as the functional
introduced by Baiti-LeFloch-Piccoli [2] for nonclassical entropy solutions. As an
illustration of the use of continuous Glimm-type functionals, we also extend a
result by Bressan and Colombo [5] for genuinely nonlinear systems, and establish
an estimate on the spreading of rarefaction waves in solutions of hyperbolic systems
with general flux-function.
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The Riemann function and oscillations in systems of two conservation
laws

Athanasios E. Tzavaras

The objective of this talk is to study the structure of oscillations for approximate
solutions to systems of two strictly hyperbolic conservation laws, via using singular
entropy entropy-flux pairs. As a byproduct, we will obtain an existence theorem
for the equations of one-dimensional elastodynamics

ut − vx = 0 ,

vt − σ(u)x = 0 .
(1)
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under the energy norm framework. The result improves on previous studies of
compactness properties by DiPerna [1], and mainly (in the energy norm setting)
by Lin [2], Shearer [5] and Serre-Shearer [4]. The method exploits the existence
of singular entropies for 2 × 2 strictly hyperbolic systems constructed in [3] and
the connection with the Riemann function [6]. The full article is forthcoming [7].
Here is a short exposé of the approach and main result.

For a strictly hyperbolic 2 × 2 system with characteristic speeds λ1 < λ2 the
equations generating entropy-entropy flux pairs are

Lw,z[η] := ηwz −
gz

g
ηw − fw

f
ηz = 0 ,

qw = λ1ηw ,

qz = λ2ηz ,
(2)

where gz

g = − λ1z

λ1−λ2
, fw

f = λ2w

λ1−λ2
. There exists a universal entropy-entropy flux

pair H = H(w, z; ξ, ζ), Q = Q(w, z; ξ, ζ) such that any function of the type

H 1lk(w, ξ) , (λ1(ξ, ζ) +Q) 1lk(w, ξ) ,

H 1lk(z, ζ) , (λ2(ξ, ζ) +Q) 1lk(z, ζ) ,

where 1lk(w, ξ) =











1lk<ξ<w if k < w

0 if k = w

−1lw<ξ<k if w < k

(3)

with k a parameter is a singular solution of (2). The universal entropy pair H−Q
is precisely the generator of the fundamental solution of L, that is

Lw,z

[

H1l(w, ξ)1l(z, ζ)
]

= δ(w − ξ) δ(z − ζ) . (4)

Oscillations of families of solutions are described through the Young measure ν.
The singular entropies are an efficient tool for localizing the support of the Young
measure ν and exctracting information from Tartar’s commutation relation

η1q2 − η2q1 = η1 q2 − η2 q1 (5)

This bracket can be applied to entropies of class (3) in two ways: (i) by coupling
singular entropies belonging to the same characteristic family, and (ii) by coupling
families belonging to different characteristic families. Coupling entropies of the
same characteristic families yields the relations established by Serre:

∂λ1

∂w
(w, z)g2(w, z)ϕ(w) = 0 ,

∂λ2

∂z
(w, z)f2(w, z)ψ(z) = 0 . (6)

Coupling entropies of different families and using the fundamental solution of the
differential operator

Nξ,ζ = ∂ξζ +
λ2ζ

λ2 − λ1
∂ξ −

λ1ξ

λ2 − λ1
∂ζ

yields a new formula for the coupling of oscillations between different characteristic
fields, see [6].
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In the second part of the talk, we consider a family of approximate solutions
(uε, vε) of the equations of elasticity (1) that are assumed to satisfy the uniform
bounds

∫

1

2
vε2 +W (uε)dx + ε

∫

a2(uε)uε
x
2 + vε

x
2dx ≤ O(1) (7)

where a(u) =
√

σ′(u) and W (u) =
∫ u

σ(τ)dτ . Under (7), vε ⇀ v in L2, uε ⇀ u
in Lq for some q > 1, and

ϕ(uε, vε) ⇀

∫

dνϕ(u, v)
∀ |ϕ(u, v)| ≤ o(1)(

1

2
v2 +W (u))

as |u|, |v| → ∞
It is assumed that the stress-strain function satisfies uniform strict hyperbolicity

σ′(u) ≥ σ0 > 0 ∀u
it has at most one inflection point and (together with derivatives up to second
order) satisfies certain growth conditions. It is then shown that the Young measure
ν reduces to a Dirac mass, ν = δu ⊗ δv, and the convergence is strong. The result
is an improvement of results in [2], [5], [4].

The proof exploits the format of singular entropies. It is based on precise
estimations of the universal entropy pair H(u, v), Q(u, v) and its derivatives that
are global in nature, and on handling Tartar’s commutation bracket for singular
pairs. The details are presented in [7].
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Transonic Shock Waves with Physical Boundaries

Zhouping Xin

In this talk, I discuss the existence and uniqueness of transonic shocks with
slowly varying sections and given pressure at the exhaustic exit. This can be re-
duces to a nonlinear boundary–value problem for a mixed–type equation, which is
the potential equation. Our results imply, in particular, the conjecture of Courant–
Friedrichs on a phenomena of transonic shock in a de Laval nozzle. Our analysis
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consists of an introduction of a new partial hodograph transformation, a weighted
energy estimate in a weighted H”older space. This is a joint work with Huicheng
Yin (Wanjing University)

An Energy Method for Boltzmann Equation

Tong Yang

(joint work with F. Huang, T.-P. Liu, H. Zhao, H. Yu and S.-H. Yu)

The purpose of the research is on the nonlinear stability of wave patterns and
non-trivial solution patterns to Boltzmann equation with or without forces.

A decomposition of the Boltzmann equation and its solution was introduced in
[2] where the Boltzmann equation is rewritten into a fluid-type system coupled
with an equation for the non-fluid component. In some sense, this combines the
Hilbert and Chapman-Enskog expansions and gives exact Boltzmann formulation
instead of approximation. Based on this, one can apply the analytic techniques
in the study of conservation laws to the stability investigation on nonlinear wave
patterns and profiles to Boltzmann equation, Vlasov-Poisson-Boltzmann system
and Vlasov-Maxwell-Boltzmann system, etc. In fact, the energy method through
the construction of entropy-entropy flux pairs becomes useful here and the behavior
of the fluid components and non-fluid components are clearly analyzed.

For the Boltzmann equation without force, we prove the stability of nonlinear
rarefaction waves in the whole space in [3], and with boundary effects in [6].
Moreover, the stability of nonlinear diffusion waves corresponding to the contact
discontinuity for Euler equations in [1].

As for the Boltzmann equation with self-induced electric field, or electric-
magnetic fields, it also shows that the entropy-entropy flux pair similar to the
one for fluid dynamics plays an important role in the lower order energy estimate.
For the Cauchy problem on the Vlasov-Poisson-Boltzmann system, the dissipation
coming from the electric field governed by the Poisson equation is crucial to close
the a priori estimate which in turn implies that the uniform space-time integra-
bility of the square of the difference between perturbed and unperturbed density
function, cf. [4]. Notice that the later integral diverges for the Boltzmann equation
or even the Navier-Stokes equations without force in the whole space. Finally for
Vlasov-Maxwell-Boltzmann system, we also obtain another proof of global exis-
tence of classical solutions for the period data which was first proved by Y. Guo.
In fact, our method based on the decomposition on the local Maxwellian has the
advantage over the method used by Y. Guo in the sense that it gives clearer de-
scription on the time evolution of the fluid components and it could be helpful in
the study on the problem about fluid limits.

In the following, we only list our papers on this subject because of the limited
space. Interested readers please refer to the other references cited in the following
papers.
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Hyperbolic Models for Viscous Incompressible Flows

Wen-An Yong

It is well known that viscous incompressible flows are described with incom-
pressible Navier-Stokes equations. On the other hand, in engineering viscous in-
compressible flows are often simulated with certain discrete dynamical systems
(the lattice Boltzmann mehod). Those dynamical systems can be regarded as a
particular discretization of some hyperbolic systems with source terms—discrete-
velocity or lattice Boltzmann models. Recently, it is shown that the Navier-Stokes
equations can be approximated with the hyperbolic systems in the diffusive limit.

The lattice Boltzmann models are usually constructed to satisfy some phys-
ical requirements like Galilean invariance and isotropy, to possess a velocity-
independent pressure and no compressible effects, and so on. These physical re-
quirements often leave free parameters. In simulations, the free parameters were
fixed through guesswork and numerical tests.

In this talk, I introduce a stability notion to characterize the hyperbolic systems
approximating the incompressible Navier-Stokes equations. This notion is based
on a stability condition proposed by me in 1992 for hyperbolic relaxation systems
and is quite different from the well-known subcharacteristic condition and entropy
dissipation conditions. In fact, because the incompressible Navier-Stokes equations
are not hyperbolic, the notion of subcharacteristic condition is irrelevant here.
Moreover, it has been proved recently that many lattice Boltzmann models used
in practice do not admit any entropy dissipation conditions.

With our stability notion, we derive some relations of parameters for several
parametrized lattice Boltzamnn models used in literature by requiring the models
to be stable in our sense. Here I would like to report that the parameter values
used in the literature are exactly those predicted by our stability requirement. Ex-
tensive numerical experiements show that our stability notion provides an effective
criterion to fix the lattice Boltzmann models.

Furthermore, we prove that the diffusive limit of the stable hyperbolic systems
is the incompressible Navier-Stokes equations at least in the regime of smooth
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flows. Moreover, the corresponding lattice Boltzmann schemes for Stokes flows
are weighted L2-stable under suitable restrictions on the time step.
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Abstracts (Numerics)

Residual distribution schemes for hyperbolic problems

Rémi Abgrall

(joint work with M. Mezine and M. Audiomor)

I have presented and discussed a class of compact schemes for hyperbolic prob-
lems.

In these schemes, the degrees of freedom are situated at vertices. The solution
is globally represented by a continuous piecewise polynomial function. The un-
known are updated in time by a technique that shares common parts with Finite
element technique and Finite volume methods.

More precisely, we borrow from the FV frame work the idea of monotonicity
preserving schemes and from the FE framework the idea of residual that permits
to achieve high order accuracy. in the most impact possible way. To achieve the
goal, we construct several monotone (first order) schemes and use them as a com-
parison principle (comparison with a high order residual). The current versions of
the scheme are from second to fourth order in space and first to third order in time.

Examples are presented: scalar hyperbolic problems, 2D flow problems etc.

Discrete Entropy Inequalities in MHD

Tim Barth

Discrete entropy inequalities for the discontinuous Galerkin (DG) finite element
discretization [12, 6, 5, 4] of first-order systems of nonlinear conservation laws are
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obtained subject to restrictions on the DG numerical flux function. This work
generalizes to symmetrizable systems of conservation laws the cell square-entropy
inequality result for scalar conservation laws given in Jiang and Shu [9]. The
analysis is then expanded to include involution constraints such as those occurring
in magnetohydrodynamics. Starting from the prototype conservation law system
in Rd

u,t + div f = 0, u, fi ∈ Rm , i = 1, . . . , d

with a convex entropy-entropy flux pair {U, F} satisfying

U,t + divF ≤ 0, U, Fi ∈ R , i = 1, . . . , d ,

discrete energy analysis is performed for the DG method in terms of entropy
symmetrization variables v(u) (see Barth [1]). Let Vh denote a finite dimensional
approximation space consisting of piecewise polynomials of degree ≤ k in each
element K of a mesh T

Vh =
{

vh | vh|K ∈
(

Pk(K)
)m

for each K ∈ T
}

.

Using this approximation space, cell entropy inequalities of the form

(1)

∫

K

U,t(vh) dx+

∫

∂K

F(vh;n) d s ≤ 0 , vh ∈ Vh

with conservative numerical entropy flux F(vh;n) are obtained whenever the nu-
merical flux h(v−,v+;n) satisfies the system generalization of Osher’s E-flux con-
dition across interelement interfaces

[v]x
+

x
−

· (h(v−,v+;n) − f(v) · n) ≤ 0 , ∀v ∈ [v−,v+] .

As an alternative to the system E-flux condition, we define a zero entropy dissi-
pation (ZED) flux given by

hZED(v−,v+;n) = 〈f · n〉x+

x
−

+
1

2

∫ 1

0

(1 − 2θ) f,v(vx
−

+ θ[v]x
+

x
−

) [v]x
+

x
−

dθ

so that a cell entropy inequality is obtained for any numerical flux satisfying the
comparison principle

[v]x
+

x
−

· h(v−,v+;n) ≤ [v]x
+

x
−

· hZED(v−,v+;n) .

In both analysis and practice, a suitable numerical flux is given by

hmv(v−,v+;n) = 〈f · n〉+− − 1

2

∫ 1

0

|f,v(θ)|u,v
[v]x

+

x
−

dθ

which is the symmetric origin of the Osher and Solomon flux [10].
We then expand the scope of the analysis to include a first-order system of con-

servation laws with solenoidal involution (see Dafermos [7] and Boillat [2]) with
specific application to compressible magnetohydrodynamics (MHD) with involu-
tion constraint divB = 0 for the magnetic induction field. The objective is to again
show how entropy analysis plays an invaluable role in designing numerical fluxes
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and stabilization terms. The analysis utilizes the MHD symmetrization theory
due to Godunov [8] which symmetrizes the augmented MHD system

u,t + div f + φT
,v div B = 0 , φ(v) : Rm 7→ R

where φ(v) is a given function from the Godunov theory. Using this theory and
tools previously developed, we prove a cell entropy inequality of the form (1) for
MHD solutions computed using the discontinuous Galerkin method with numerical
flux satisfying the system E-flux condition or ZED flux comparison principle when-
ever interelement continuity of the normal component of the magnetic induction
field is enforced. This is readily accomplished using families of Raviart-Thomas
[11] or Brezzi-Douglas-Marini [3] finite elements for the magnetic induction field.
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A strongly degenerate convection-diffusion equation with
discontinuous coefficients modelling clarifier-thickener units

Raimund Bürger

(joint work with Kenneth H. Karlsen and John D. Towers)

Mathematical models for continuous clarification-thickening processes of ideal
suspensions extend Kynch’s kinematic sedimentation model [6] to continuously
operated units. Within this theory, the suspension is described by a nonlinear
flux density function for a scalar conservation law. In the clarifier-thickener setup,
a feed source is located between the overflow and underflow levels. This gives
rise to one zone located above the feed, the clarification zone with an upwards-
directed bulk flow, and one zone located below the feed, the thickening zone with
a donwards directed bulk flow. The overflow and underflow levels correspond to
transitions from a composite nonlinear flux to a linear transport flux. The result
is a nonlinear conservation law with a flux function which is discontinuous at the
feed, underflow and overflow levels. This property makes standard conservation
law theory inapplicable. The well-posedness of this model and the convergence of
a finite-difference scheme are proved in [2, 3].

Most real-world solid-liquid suspensions do not fall within the kinematic theory.
Rather, they consist of small flocs that give rise to compressible sediments as the
local solids concentration exceeds a critical value. This effect is modeled by an
effective solid stress function [1]. Thus, the material behaviour of the mixture is
described by two functions, the flux density function and the effective solid stress,
which define a strongly degenerate parabolic PDE for the solids concentration.

In a very recent analysis [4, 5], the discontinuous flux clarifier-thickener setup
and the degenerate diffusion term to model sediment compressibility, have been
combined into a model for clarifier-thickeners treating a flocculated suspension.
The resulting governing problem can be stated as follows.

The governing equation is the convection-diffusion equation

(1) ut + f(γ(x), u)x = (γ1(x)A(u)x)x , (x, t) ∈ R × (0, T ),

where t is time, x is the depth variable, u is the sought volumetric solids con-
centration, and A(u) is a monotonically increasing Lipschitz continuous function
with A(u) = 0 for u ≤ uc with 0 < uc < 1. This function models the sediment
compressibility, and uc is a critical concentration at which the solid particles are
assumed to touch each other. Clearly, (1) degenerates to first-order hyperbolic
type for u < uc.

The convective flux function is given by

f(γ, u) = γ1b(u) + γ2(u− uF),

where b(u) is a material specific, non-negative Lipschitz continuous function (the
so-called hindered settling function) with compact support in the interval u ∈ [0, 1]
of admissible volume fractions and uF is the concentration at which the clarifier-
thickener unit (whose interior occupies the interval (xL < 0, xR > 0)) is fed through
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a feed inlet located at x = 0. The vector γ = (γ1, γ2) consists of the discontinuous
parameters

γ1(x) :=

{

1 for x ∈ (xL, xR),

0 for x /∈ (xL, xR),
γ2(x) :=

{

qL for x ≤ 0,

qR for x > 0,

where the parameter γ1 describes that the nonlinear and diffusive parts of the
flux are effective in the interior of the clarifier-thickener only, and the parameter
γ2 accounts for the division of the mixture feed flux into an upwards-directed
transport flux with the velocity qL < 0 and a downwards-directed flux with the
velocity qR > 0. The governing equation is studied together with the initial
condition u(x, 0) = u0(x) for x ∈ R.

We introduce a simple finite-difference scheme and prove its convergence to a
weak solution that satisfies an entropy condition. A limited analysis of steady
states as desired stationary modes of operation is performed. Numerical exam-
ples illustrate that the model realistically describes the dynamics of flocculated
suspensions in clarifier-thickeners.

This talk is based in the papers [4, 5].
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Navier–Stokes–Korteweg equations, Augmented formulations and
numerical applications

Frédéric Coquel

The present work is devoted to the numerical approximation of the solution of
a mixed (hyperbolic–elliptic) non linear first order system with viscous dispersive
perturbations. Such a system arises in the modelling of compressible medium un-
dergoing phase transitions. Endpoints of travelling wave solutions are known to
be sensitive to the viscous–dispersive regularisations when kept in balance. The



Hyperbolic Conservation Laws 941

work is precisely devoted to the development of numerical methods capable of
capturing the reported sensitiveness. Following LeFloch, we propose to control
the evolution in time of the discrete entropy rate of dissipation encoding precisely
the sensitiveness. In that way, we propose to circumvent an unusual dependance
of the entropy with respect to the gradient of the unknown when introducing an
augmented formulation of the original PDEs. This augmented system possesses
a consistent augmented entropy pair and restores the solutions (when smooth) of
the original PDEs when the initial data are suitably prescribed. We then show
how to approximate the solutions of the original PDEs by those of the augmented
formulation when controlling sharply the entropy rate of dissipation.

Approximation of Hyperbolic Equations in Complex Geometries

Christiane Helzel

(joint work with Marsha J. Berger and Randall J. LeVeque)

Many applications require the approximation of hyperbolic equations in com-
plex geometry. While often body fitted grids are used that conform to the geome-
try of the problem, we are particularly interested in developing numerical methods
where the computational domain is embedded in a uniform Cartesian grid. Such
an approach is attractive, since away from the boundary it allows the use of Carte-
sian grid high-resolution shock capturing methods that are by now well developed.
Furthermore, even for problems with more complicated geometry a Cartesian grid
embedded boundary method allows an efficient and automatic grid generation and
the use of structured adaptive mesh refinement.

The numerical challenge associated with a Cartesian grid embedded boundary
approach is the so-called small cell problem. Near the embedded boundary the
irregular grid cells may be orders of magnitude smaller than regular Cartesian grid
cells. Since stability theory for standard explicit finite volume methods suggests
that the time step is proportional to the size of the grid cell, this would typically
require small time steps near the embedded boundary. Therefore, our goal is
to construct numerical methods that overcome the time step restriction at the
embedded boundary and allow time steps that are appropriate for the regular
part of the domain. It turns out that an even more difficult problem is to retain
high accuracy near the boundary.

During the last decade several different Cartesian grid embedded boundary
methods for the approximation of hyperbolic problems have been developed. Sev-
eral authors use a cell merging technique where small irregular cut cells are merged
together with a neighboring regular grid cell, see for instance [3], [7]. Other ap-
proaches are based on flux redistribution [6] or handle boundary cells as full cells
[4]. So far these schemes have not been carried out to high-order accuracy at the
boundary.

In my talk I have presented an embedded boundary method that overcomes the
time step restriction while seeking an accurate approximation near the boundary
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as well as in the whole domain. Details of this method can be found in our
papers [1] and [5]. Our approach to overcome the small cell problem is based
on the so-called h-box method suggested in earlier work by Berger and LeVeque
[2]. The basic idea behind this method is to approximate numerical fluxes at
the interface of a small cell using initial values specified over regions of length
h, where h depends on the size of a regular Cartesian grid cell. This leads to a
finite volume method in which the flux difference in each grid cell is of the order
of the size of the grid cell. Therefore we can hope that the size of the grid cell
arising in the denominator of the finite volume method does not cause a stability
problem. The accuracy of the h-box method depends strongly on the definition
of the values of the conserved quantities assigned to the h-boxes. In [1] we have
studied the construction of h-box methods in a relatively simple one dimensional
context where most of the grid cells have the reference grid cell length h but some
grid cells may be orders of magnitude smaller. For the advection equation we could
show that our method leads to a second order accurate approximation of smooth
solutions on non-uniform grids without any restrictions on the grid. Furthermore,
we proved stability of the second order method under a CFL condition that only
depends on the size of the regular grid cells. Numerical tests confirmed the same
properties for the approximation of nonlinear systems, e.g. the Euler equations of
gas dynamics. In [5] we have developed a second order accurate rotated grid h-box
method that can handle embedded geometries. Here the calculation of numerical
fluxes by using the h-box idea again leads to the required stability property. In
the multi-dimensional situation a rotated grid method was necessary to also retain
conservativity. Furthermore, the rotated grid method was constructed in a way
that leads to a second order accurate approximation of the solution in the whole
domain as well as in the cut cells at the embedded boundary. This makes our
rotated grid h-box method more accurate than any other existing Cartesian grid
embedded boundary method. The performance of the method was illustrated by
several numerical test calculations.
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Computation of multivalued solutions to nonlinear PDEs

Shi Jin

Many physical problems arising from high frequency waves, dispersive waves
or Hamiltonian systems require the computations of multivalued solutions which
cannot be described by the viscosity methods. In this talk I will review several re-
cent numerical methods for such problems, including the moment methods, kinetic
equations and level set methods. Applications to the semiclassical Schroedinger
equation and Euler-Piosson equations with applications to modulated electron
beams in Klystrons, and general symmetric hyperbolic systems will be discussed.
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Adaptive Central-Upwind Schemes for Nonconvex Hyperbolic
Conservation Laws

Alexander Kurganov

(joint work with Guergana Petrova, Bojan Popov)

We consider nonconvex hyperbolic conservation laws. The two main examples
are scalar equations with nonconvex fluxes and the Euler equations of gas dynamics
with general, possibly nonconvex, equation of state.

We develop Godunov-type central-upwind schemes for such class of problems.
Central-upwind schemes [1], like other Godunov-type schemes, are projection-
evolution methods: piecewise polynomial reconstructions are evolved in time ac-
cording to the integral form of conservation laws. In the central-upwind framework,
the evolution is carried out using the control volumes that include Riemann fans
so that no Riemann problem solvers are required. The sizes of the corresponding
Riemann fans are determined with the help of one-sided local speeds of propa-
gation related to the largest and smallest eigen-values of the Jacobians. In the
nonconvex case, a careful evaluation of these speeds helps to avoid oscillations
provided a piecewise polynomial reconstruction is (essentially) non-oscillatory.

However, if the employed reconstruction is compressive, a computed non-oscilla-
tory solution may converge to an unphysical weak solution. We have demonstrated
this on several scalar examples, where the exact entropy solution is available, and
on several gas dynamics examples. At the same time, using a dissipative recon-
struction, which happens to lead to the convergence of the computed solution to
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the exact entropy solution, may significantly affect the quality of the achieved
resolution. To overcome this difficulty, we propose a new class of adaptive central-
upwind schemes that employ a dissipative limiter near the points where the con-
vexity changes, and a more compressive limiter in the rest of the computational
domain.

Our numerical results clearly demonstrate high resolution, accuracy, and ro-
bustness of the proposed methods.
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Geometrical Solutions Vs. Entropy Solutions

Hailiang Liu

We introduce a new level set method for computational high frequency wave
propagation in dispersive media, with an application to semiclassical limit for
Schrödinger equations with high frequence initial data. We discuss also level set
methods for general first order equations and identify a new notion – geometrical
solutions.

Finally we show both entropy solutions (for conservation laws) and viscosity
solution (for Hamilton–Jacobi equations) are just part of the geometrical solution
characterized by the level set formulations.

Numerical modelling of the shallow water equations and
magnetohydrodynamic shallow water equations by the finite volume

evolution Galerkin methods

M. Lukáčová - Medviďová

(joint work with T. Kröger and Z. Vlk)

The goal of this contribution is to present a generalization of the finite volume
evolution Galerkin (FVEG) methods for the
• shallow water equations with source terms which model the bottom elevation
• shallow water magnetohydrodynamic equations.

The FVEG methods were introduced and studied extensively for hyperbolic
conservation laws by Lukáčová, Morton and Warnecke, see [1]-[4] and the refer-
ences therein. These methods couple a finite volume formulation with approximate
evolution operators which are based on the theory of bicharacteristics for the first
order systems. As a result exact integral equations for linear or linearized hy-
perbolic conservation laws can be derived. They take all of the infinitely many
directions of wave propagation into account. For two-dimensional conservation
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laws this is realized by the integration along the sonic circle, i.e. for a param-
eter θ ∈ [0, 2π]. Further integrals appearing in the exact integral equations are
the integrals along time, e.g. from tn to tn+1. Since the exact integral equations
are implicit in time appropriate numerical quadratures have to be applied in time
in order to approximate integrals along the mantle of the so-called bicharacteris-
tic cones. This yields the approximate evolution operators. In the finite volume
framework the approximate evolution operators are used to evolve the solution
along the cell interfaces in order to compute fluxes on edges. This step can be
considered as a predictor step. In the corrector step the finite volume update is
done. In summary, the FVEG scheme is a genuinely multi-dimensional method
that is explicit in time.

• Similarly to other balance laws the shallow water equations with source term
admit a steady-state solutions in which nonzero flux gradients are exactly balanced
by the source terms. For correct approximation of these states a delicate treatment
of the source term is necessary. In the framework of the FVEG methods we have
derived the well-balanced approximate evolution operator. It means that the exact
evolution operator, which includes the evolution of the source term, has been
approximated in such a way that the resulting operator is stable with respect to
small perturbations of velocity. In particular if the velocity u ≈ 0, v ≈ 0 then we
have for the depth of the shallow water and the bottom elevation h + b ≈ const.
Predicted values are used for the flux calculation along the cell interfaces. Further,
in order to keep the well-balance character of the discretization scheme the finite
volume update of the source term need to be done using the cell-interface values
instead of the cell-centered ones. Numerical experiments confirm reliability of the
described approach, cf. [5].

Another critical case, which need to be considered in the derivation of the well-
balanced schemes is the so-called drain on the bottom. If depth of the shallow
water h ≈ 0 even small oscillations may result in the negative values of h and it
will be impossible to compute characteristic speeds u ± √

gh. We can show that
under some stablity condition our scheme is positivity preserving, i.e. h ≥ 0.

• Further application of the FVEG scheme that we are interested in is the shal-
low water magnetohydrodynamic (SMHD) equations. These equations are used
to model solar tachocline, i.e. a thin layer of the solar radius that separates the
convective zone from the radiative zone in stars. In cooperation with T. Kröger
[6] we have derived the exact and approximate evolution operators for the system
of the SMHD equations in two space dimensions. Up to our knowledge, this is
the first attempt to apply genuinely multi-dimensional EG technique to a magne-
tohydrodynamic model. We have studied more deeply the approximation of the
spatial derivatives in the evolution operator for singular wave modes, for which
the wave front concentrates to a point, as well as for non-singular wave modes.
More precisely, we can show that for arbitrary hyperbolic conservation laws, the
spatial derivatives of the solution can be replaced by means of the Gauß theorem
with the derivatives of the eigenvectors themselves.
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Due to the complex eigenstructure which arises in the SMHD system, it is still
rather complicated to apply this result directly. Instead we propose to exploit
this result numerically. Our numerical experiments confirm the reliability of this
approach for non-singular wave modes. Treatment of the singular wave modes is
more delicate. Our numerical experiments show that the approximation of the
derivatives by slopes of the bilinear reconstruction yields the best results. We
prove also that using a trapezoidal quadrature for cell-interface flux integrals in
the magnetic part, i.e. the Maxwell equations, a discrete version of the divergence
free constraint is satisfied automatically at vertices of our regular mesh.
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Weak solutions and numerical approximation of two phase flow
problems with spatial discontinuity of capillary pressure

A.Michel

(joint work with G.Enchery, R. Eymard)

Reservoir or sedimentary basin simulations lead to the modelling of two-phase
flows through heterogeneous porous media. The heterogeneities are related to the
presence of different geological layers and can entail a phenomenon of capillary
entrapment.

Thus, in mathematical models, the relative permeabilities and the capillary
pressure are both functions of the saturation and of the space variable. Moreover,
they can be discontinuous regardless to the space variable.

Here we consider a porous medium Ω shared in two homogeneous parts Ωi,
i = 1, 2, each of them being characterised by its porosity φi, its relative mobility
ηi and its capillary curve πi. Focusing on the capillary forces, the oil saturations
ui(x, t), (x, t) ∈ Ωi×(0, T ), in each domain are solutions of the following equations:
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φi
∂ui

∂t
− ∆ϕi(ui) = 0 in Ωi × (0, T ),(1)

ηi∇πi(ui).n = 0, on (∂Ω \ Γ) × (0, T ), for all i ∈ {1, 2}.(2)

Moreover, the following conditions must be satisfied on the interface Γ between
Ω1 and Ω2:

∇ϕ1(u1,Γ).n1,Γ = −∇ϕ2(u2,Γ).n2,Γ on Γ × (0, T ), [flux continuity](3)

π̂1(u1,Γ) = π̂2(u2,Γ) on Γ × (0, T ), [extended pressure continuity](4)

where ϕi(u) =
∫ u

0
ηi(a)π

′
i(a)da is a capillary diffusion term and π̂1 and π̂2

are truncated capillary pressures curves. In the usual case where π1 and π2 are
such that π1(0) ≤ π2(0) ≤ π1(1) ≤ π2(1) then π̂1(u) = max(π1(u), π2(0)) and
π̂2(u) = min(π2(u), π1(1)).

Problem (1)–(4) has already been handled by Bertsch, Passo, and van Duijn
[1] or van Duijn, Molenaar, and de Neef [2], especially in 1D.

In [3] we give a weak form of the problem (1)–(4) and we propose a numerical
method based on a finite volume scheme with two secondary unknowns on the
interface. This scheme is shown to converge to a weak solution of this problem
for multidimensional bounded domains. Under strong regularity assumptions, it
is easy to adapt the uniqueness proof given in [1] for a 1D problem to the multi-
dimensional case.

The question of uniqueness without strong regularity assumptions is more diffi-
cult. By using Kruzkov techniques, Karlsen and Ohlberger have already obtained
uniqueness and error estimates for problems with spatially dependant diffusion
coefficients. Is it possible to adapt these techniques to the case where the diffusion
function itself depends on the space variables ? To our knowledge, it is an open
question.
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Error estimate for the approximation of non-linear conservation laws
on bounded domains by the finite volume method

Mario Ohlberger

(joint work with Julien Vovelle)

Let Ω be an open convex polygonal bounded domain in R
d, d = 2, 3, endowed

with the Euclidean norm | · | and let T ∈ R
+. We consider the following initial

boundary value problem for non-linear scalar conservation laws

ct + ∇ · F(x, t, c) = 0 in Ω × (0, T ),(1)

c(·, 0) = c0 in Ω,(2)

c(x, t) = c̄(t, x) in ∂Ω × (0, T ) .(3)

Since (1) is a evolution equation, the main features of the analysis of conserva-
tion laws and of their approximations by the finite volume method already appear
in the context of the Cauchy problem. The order of accuracy of the finite volume
method for the Cauchy problem is one of these well-known features: the first given
a priori error estimate is the (sharp) h1/2 (h being the size of the mesh) estimate
of Kuznetsov [6] in the 1D case. This estimate remains valid on structured meshes
in R

d while, for finite volume schemes on unstructured meshes, the lack of an uni-
form BV estimate on the numerical solution leads to an error estimate of reduced
order h1/4 (see for example [2]). Still, in the context of the Cauchy problem, re-
fined error estimates have been given (and their sharpness analyzed) according to
the genuine non-linearity of the flux, to the structure of the entropy solution to
(1)-(2), or to the nature of the waves in the solution. We refer to the discussion
and compilation made by T. Tang on that profuse subject [11].

For practical applications a posteriori error estimates are even more important
than just convergence rates. Such estimates allow to extract error indicator infor-
mation that can be used in order to derive efficient self adaptive strategies for the
finite volume schemes. A posteriori error estimates for finite volume approxima-
tions to the Cauchy problem were derived in [10, 3, 5, 4].

Although the study of the finite volume method applied to the Cauchy problem
has led to the understanding of most of the mechanisms which govern the accuracy
of this numerical method of approximation, the initial-boundary value problem has
its own interest and its approximation by finite volume schemes deserves an analy-
sis. With that purpose in mind, notice that a new and characteristic feature of the
approximation of the initial-boundary value problem by a finite volume scheme
is the possible creation of a numerical boundary layer. This numerical boundary
layer is a sub-product of the numerical diffusion effects induced by the scheme.
The study of the numerical boundary layer has been performed by C. Chainais-
Hillairet and E. Grenier [1], in the 1D case and for modified Lax-Friedrichs schemes
on cartesian grids in the multi-D case. Such an analysis gives a precise description
of the numerical solution and, as a consequence, the speed of convergence of this
solution to the entropy solution of the problem (1)–(3). In the non-characteristic
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case with smooth exact solutions, this speed of convergence is proved to be of
order h in the L∞(0, T ;L1(Ω)) norm, where h is the size of the mesh.

Unfortunately, the techniques of numerical boundary layer analysis seem dif-
ficult to be set when no selected direction of (discrete) derivation exists, as is
the case when finite volume schemes on unstructured meshes are used. For such
schemes one can therefore think to adapt the technique developed by Kuznetsov
[6] for the analysis of the Cauchy problem in the framework of the initial bound-
ary value problem to get error estimates, with the drawback that this tool is not
accurate at all to take into account the special phenomena at the boundary of
the domain. In the specific situation F(x, t, c) = u(x, t)f(c) with f monotone,
this drawback can be overcome, for the reason that the inflow and outflow parts
of the boundary are determined a priori by the given velocity field u. In [12],
Vignal gives an a priori error estimate of order h1/4 for the initial boundary value
problem. However, to our knowledge, for general fluxes F, and general schemes
on possibly unstructured meshes, no results or techniques of error estimates which
account for the influence of the boundary condition have been delivered. In order
to fill in this gap, we adapt the technique of Kuznetsov [6] to the proof of unique-
ness of the entropy solution given by F. Otto [9, 7, 13] and prove that the error
can be estimated by an a posteriori error bound which is at least of order h1/6

for meshes with mesh size h. In order to obtain this new result, we also prove
that the exact entropy solution of problem (1)–(3) admits BV-solutions on convex
polygonal bounded domains. In addition, an adaptive strategy is derived from the
a posteriori result and numerical experiments are given for the resulting adaptive
finite volume method. The detailed results of this work can be found in [8]
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A High-Resolution Constrained Transport Method
for Astrophysical Flows

James A. Rossmanith

The ideal magnetohydrodynamic (MHD) equations model the dynamics of elec-
trically conducting fluids. These equations are important in modeling phenomena
in a wide range of applications including space weather, solar physics, laboratory
plasmas, and astrophysical fluid flows. In conservation form, the MHD system can
be written as

∂

∂t









ρ
ρ~u
E
~B









+ ~∇ ·











ρ~u

ρ~u⊗ ~u+
(

p+ 1
2 | ~B|2

)

I − ~B ⊗ ~B

~u
(

E + p+ 1
2 | ~B|2

)

− ~B(~u · ~B)

~u⊗ ~B − ~B ⊗ ~u











= 0,(1)

~∇ · ~B = 0 ,(2)

where

p = (γ − 1)

(

E − 1

2
ρ|~u|2 − 1

2
| ~B|2

)

.(3)

Here ρ is the mass density, ~u = (u1, u2, u3)
t is the velocity field, E is the total

energy, ~B = (B1, B2, B3)
t
is the magnetic field, p is the thermal pressure, (1/2)| ~B|2

is the magnetic pressure, and γ is the ideal gas constant. Equation (3) is the
equation of state for an ideal gas and closes the system by relating the pressure
to the other unknowns. It is also sometimes beneficial to introduce a magnetic

potential, ~A, that is related to the magnetic field in the following way:

(4) ~B = ~∇× ~A.

The ideal MHD equations form a system of hyperbolic conservation laws, (1),
with a constraint, (2). Furthermore, any exact solution to (1) automatically satis-
fies (2) provided that the initial magnetic field obeys the divergence-free constraint
[15]. The main difficulty in numerically solving the MHD system is that most nu-
merical schemes only satisfy constraint (2) to the truncation error of the method.
Across shocks this can lead to a divergence error that is O(1); this in turn can
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lead to large spurious oscillations and negative pressures [4]. Once negative pres-
sures are encountered the system fails to be hyperbolic and the numerical code
will crash.

Several modifications to standard high-resolution shock-capturing schemes have
been introduced to overcome this difficulty including the projection method [4],
constrained transport [7], operator splitting [16], the 8-wave formulation [10, 11],
and hyperbolic divergence-cleaning [6]. In recent years, the constrained transport
method originally proposed by Evans and Hawley [7] has gained much attention
(see Tóth [15] for a review). In this approach, a staggered magnetic field is in-
troduced that can be computed from a staggered magnetic potential in such a
way that it satisfies the constraint to machine precision in each grid cell for all
time. Several variants of the original constrained transport approach have been
introduced, each with a different strategy for updating the magnetic potential
[1, 2, 5, 8, 9, 13, 14]. Unstaggered versions of a few of these methods were intro-
duced in [15]. All of these methods automatically satisfy (2), but can sometimes
fail to produce a non-oscillatory magnetic field. This is largely due to the fact
that in these methods one is not able to directly apply flux limiters in the up-
date of the magnetic field, at least in the usual sense of applying TVD limiters in
high-resolution methods.

In [12] a wave propagation method is introduced that utilizes a novel constrained
transport technique to keep the magnetic field divergence-free. This approach
is based on directly solving a hyperbolic equation for the magnetic potential in
conjunction with a new limiting strategy to obtain a non-oscillatory magnetic field.
Like the methods of Tóth [15], this new approach does not use a staggered grid.

In this work we apply the constrained transport method of [12] to several test
problems for ideal MHD as well as special relativistic MHD (SRMHD). Because
the numerical grid is completely unstaggered, it is also relatively straightforward
to incorporate it into an adaptive mesh refinement framework such as amrclaw

[3]; results using amrclaw are also provided.
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[6] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic
divergence cleaning for the MHD equations. J. Comp. Phys., 175:645–673, 2002.

[7] C. Evans and J.F. Hawley. Simulation of magnetohydrodynamic flow: a constrained trans-
port method. Astrophys. J., 332:659, 1988.



952 Oberwolfach Report 18/2004

[8] P. Londrillo and L. Del Zanna. High-order upwind schemes for multidimensional magneto-
hydrodynamics. Astrophys. J., 530:508–524, 2000.

[9] P. Londrillo and L. Del Zanna. On the divergence-free condition in godunov-type schemes for
ideal magnetohydrodynamics: the upwind constrained transport method. J. Comp. Phys.,
195:17–48, 2004.

[10] K.G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works in
more than one dimension). Technical Report 94-24, ICASE, Langley, VA, 1994.

[11] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, and D.L. De Zeeuw. A solution-adaptive
upwind scheme for ideal magnetohydrodynamics. J. Comp. Phys., 154:284–309, 1999.

[12] J.A. Rossmanith. An unstaggered, high-resolution constrained transport method for mag-
netohydrodynamic flows. accepted by J. Comp. Phys., 2004.

[13] D.S. Ryu, F. Miniati, T.W. Jones, and A. Frank. A divergence-free upwind code for multi-
dimensional magnetohydrodynamic flows. Astrophys. J., 509(1):244–255, 1998.

[14] H. De Sterck. Multi-dimensional upwind constrained transport on unstructured grids for
“shallow water” magnetohydrodynamics. In AIAA 2001-2623, June 2001.
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Entropy Stability Theory for Nonlinear Conservation Laws

Eitan Tadmor

Abstract. We introduce general families of entropy-conservative schemes, interesting

in their own right. The present treatment of such schemes in [Tadmor, 2003], extends

our earlier recipe for construction of entropy-conservative schemes, introduced in 1987.

Entropy stability can be enforced on rarefactions while keeping the sharp resolution

of shock discontinuities. A comparison with the numerical viscosities associated with

these entropy-conservative schemes provides a useful framework for the construction and

analysis of entropy-stable schemes.

We consider semi-discrete conservative schemes of the form

(2)
d

dt
uν(t) = − 1

∆xν

[

fν+ 1
2
− fν− 1

2

]

,

serving as consistent approximations to systems of conservation laws of the form

(3)
∂

∂t
u +

∂

∂x
f(u) = 0, (x, t) ∈ R × [0,∞),

where f(u) = (f1(u), . . . , fN (u))> are smooth flux functions of the N -vector of
conservative variables u(x, t).

Let (U, F ) be an entropy pair associated with the system (3). We ask whether
the scheme (2) is entropy-stable with respect to such a pair, in the sense of sat-
isfying a discrete entropy inequality analogous to the entropy inequality U(u)t +
F (u)x ≤ 0,

(4)
d

dt
U(uν(t)) +

1

∆xν

[

Fν+ 1
2
− Fν− 1

2

]

≤ 0.
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Here, Fν+ 1
2

= F (uν−p+1, . . . ,uν+p) is a consistent numerical entropy flux, with

F (u,u, . . . ,u) = F (u). If, in particular, equality holds in (4), we say that the
scheme (2) is entropy-conservative.

The answer to this question of entropy stability provided in [1] consists of two
main ingredients: (i) the use of the entropy variables and (ii) the comparison with
appropriate entropy-conservative schemes.

Define the entropy variables v ≡ v(u) := ∇uU(u). Thanks to the convexity
of U(u), the mapping u → v is one-to-one and hence we can make the change of
variables u = u(v), which puts the scheme (2) into the equivalent form

(5)
d

dt
uν(t) = − 1

∆xν

[

gν+ 1
2
− gν− 1

2

]

, uν(t) = u(vν(t)),

with a consistent numerical flux

gν+ 1
2

= g(vν−p+1, . . . ,vν+p) := f(u(vν−p+1), . . . ,u(vν+p))

consistent with g(v) := f(u(v)). The compatibility relation U>
u fu = F>

u implies
the existence of a potential ψ(v) given by, ψ(v) := 〈v,g(v)〉 −F (u(v)), such that
g(v) = ∇vψ(v). We are ready to quote the main result of [1].

Theorem 0.1. (Tadmor 1987) The conservative scheme (5) is entropy-conser-
vative if its numerical flux g = g∗ satisfies

(6)
〈

∆vν+ 1
2
,g∗

ν+ 1
2

〉

= ∆ψν+ 1
2
.

Next, we introduce a new general family of entropy-conservative schemes which
admit an explicit, closed-form formulation. To this end, at each cell consist-

ing of two neighbouring values vν and vν+1, we let
{

rj

ν+ 1
2

}N

j=1
be an arbitrary

set of N linearly independent N -vectors, and let
{

`
j

ν+ 1
2

}N

j=1
denote the corre-

sponding orthogonal set,
〈

`
j

ν+ 1
2

, rk
ν+ 1

2

〉

= δjk . Next, we introduce the interme-

diate states,
{

vj

ν+ 1
2

}N

j=1
, starting with v1

ν+ 1
2

= vν , and followed by vj+1

ν+ 1
2

=

vj

ν+ 1
2

+
〈

`
j

ν+ 1
2

,∆vν+ 1
2

〉

rj

ν+ 1
2

, j = 1, 2, . . . , N , thus defining a path in phase space,

connecting vν to vν+1,

(7) vN+1
ν+ 1

2

= v1
ν+ 1

2

+

N
∑

j=1

〈

`
j

ν+ 1
2

,∆vν+ 1
2

〉

rj

ν+ 1
2

= vν + ∆vν+ 1
2
≡ vν+1.

Since the mapping u 7→ v is one-to-one, the path is mirrored in the usual phase

space of conservative variables,
{

uj

ν+ 1
2

:= u
(

vj

ν+ 1
2

)}N+1

j=1
, starting with u1

ν+ 1
2

= uν

and ending with uN+1
ν+ 1

2

= uν+1.



954 Oberwolfach Report 18/2004

Theorem 0.2. The conservative scheme duν(t)/dt = −
[

g∗
ν+ 1

2

−g∗
ν− 1

2

]

/∆xν , with

a numerical flux given by

(8) g∗
ν+ 1

2

=

N
∑

j=1

ψ
(

vj+1

ν+ 1
2

)

− ψ
(

vj

ν+ 1
2

)

〈

`
j

ν+ 1
2

,∆vν+ 1
2

〉 `
j

ν+ 1
2

,

is an entropy-conservative approximation consistent with (3).

Proof. The entropy conservation requirement (6) follows directly from (7) for

〈

∆vν+ 1
2
,g∗

ν+ 1
2

〉

=

N
∑

j=1

ψ
(

vj+1

ν+ 1
2

)

− ψ
(

vj

ν+ 1
2

)

〈

`
j

ν+ 1
2

,∆vν+ 1
2

〉

〈

`
j

ν+ 1
2

,∆vν+ 1
2

〉

= ψ
(

vN+1
ν+ 1

2

)

− ψ
(

v1
ν+ 1

2

)

= ∆ψν+ 1
2
.

It remains to verify the consistency relation. Let

v
j+ 1

2

ν+ 1
2

(ξ) :=
1

2

(

vj

ν+ 1
2

+ vj+1

ν+ 1
2

)

+ ξ
〈

`
j

ν+ 1
2

,∆vν+ 1
2

〉

rj

ν+ 1
2

,

denote the straight subpath connecting vj

ν+ 1
2

and vj+1

ν+ 1
2

for − 1
2 ≤ ξ ≤ 1

2 ; then we

express the ψ-potential jump between two consecutive intermediate states as

ψ
(

vj+1

ν+ 1
2

)

− ψ
(

vj

ν+ 1
2

)

=

∫ 1
2

ξ=− 1
2

d

dξ
ψ

(

v
j+ 1

2

ν+ 1
2

(ξ)
)

dξ(9)

=

〈
∫ 1

2

ξ=− 1
2

g
(

v
j+ 1

2

ν+ 1
2

(ξ)
)

dξ, rj

ν+ 1
2

〉

〈

`
j

ν+ 1
2

,∆vν+ 1
2

〉

.

Inserting this into (8), we find that the entropy-conservative flux can be equiva-
lently written as

g∗
ν+ 1

2

=
N

∑

j=1

〈
∫ 1

2

ξ=− 1
2

g
(

v
j+ 1

2

ν+ 1
2

(ξ)
)

dξ, rj

ν+ 1
2

〉

`
j

ν+ 1
2

,(10)

and consistency is now obvious, g∗(v,v) =
∑N

j=1

〈

g(v), rj

ν+ 1
2

〉

`
j

ν+ 1
2

= g(v). �

A comparison with the numerical viscosities associated with (8) along the lines of
[2] yields the following entropy-stability result.

Theorem 0.3. . Given a complete path in phase space,
{

uj

ν+ 1
2

:= u
(

vj

ν+ 1
2

)}N+1

j=1
,

associated with left and right orthogonal sets
〈

`
j

ν+ 1
2

, rk
ν+ 1

2

〉

= δjk, where rj

ν+ 1
2

is
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in the direction of vj+1

ν+ 1
2

− vj

ν+ 1
2

. Then, the semi-discrete scheme

(11)
d

dt
uν(t) = − 1

2∆xν

[

N
∑

j=1

〈

f
(

uj

ν+ 1
2

)

+ f
(

uj+1

ν+ 1
2

)

, rj

ν+ 1
2

〉

`
j

ν+ 1
2

−
〈

f
(

uj

ν− 1
2

)

+ f
(

uj+1

ν− 1
2

)

, rj

ν− 1
2

〉

`
j

ν− 1
2

]

+
1

2∆xν

[

N
∑

j=1

q
j+ 1

2

ν+ 1
2

〈

`
j

ν+ 1
2

,∆vν+ 1
2

〉

`
j

ν+ 1
2

−
N

∑

j=1

q
j+ 1

2

ν− 1
2

〈

`
j

ν− 1
2

,∆vν− 1
2

〉

`
j

ν− 1
2

]

,

is entropy-stable if it contains more numerical viscosity than the entropy-conser-
vative one in the sense that the following holds
(12)

q
j+ 1

2

ν+ 1
2

≥
〈

rj

ν+ 1
2

, Q
j+ 1

2
,∗

ν+ 1
2

rj

ν+ 1
2

〉

, Q
j+ 1

2
,∗

ν+ 1
2

:=

∫ 1
2

ξ=− 1
2

2ξB
(

v
j+ 1

2

ν+ 1
2

(ξ)
)

dξ, B(v) := gv(v).

Remark. Choice of path. The new ingredient here is the choice of a proper sub-

path in phase space. We demonstrate the advantage of using such a subpath in the

context of second-order accurate schemes. Let
{

wk(v(ξ)) = wk
(

v
j+ 1

2

ν+ 1
2

(ξ)
)}

be

the orthonormal eigensystem of the symmetricB = so thatB
(

v
j+ 1

2

ν+ 1
2

(ξ)
)

wk(v(ξ)) =

bk(v(ξ))wk(v(ξ)). Expanding rj

ν+ 1
2

=
∑

k

〈

wk(v(ξ)), rj

ν+ 1
2

〉

wk(v(ξ)), we rewrite

the amount of entropy-conservative viscosity corresponding to a typical subpath
on the left of (12)

〈

rj

ν+ 1
2

, Q
j+ 1

2
,∗

ν+ 1
2

rj

ν+ 1
2

〉

=

∫ 1
2

ξ=− 1
2

2ξ
〈

rj

ν+ 1
2

, B
(

v
j+ 1

2

ν+ 1
2

(ξ)
)

rj

ν+ 1
2

〉

dξ(13)

=
N

∑

k=1

∫ 1
2

ξ=− 1
2

2ξbk(v(ξ))
〈

wk(v(ξ)), rj

ν+ 1
2

〉2

dξ.

Simple upper bounds, for instance, 2ξbk(v(ξ)) ≤ supξ |bk(v(ξ))|, characterize the
first-order Roe-type schemes. For second-order accuracy, we perform one more
integration by parts,

(14)
〈

rj

ν+ 1
2

, Q
j+ 1

2
,∗

ν+ 1
2

rj

ν+ 1
2

〉

=

N
∑

k=1

∫ 1
2

ξ=− 1
2

(

1

4
− ξ2

)

[〈

∇vbk(v(ξ)), rj

ν+ 1
2

〉〈

wk(v(ξ)), rj

ν+ 1
2

〉2

dξ+

+ 2bk(v(ξ))
〈

rj

ν+ 1
2

,∇vw
k(v(ξ))rj

ν+ 1
2

〉]

dξ.
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Here, the second-order accuracy is reflected by the viscosity amplitudes of order
O

(∣

∣∆vν+ 1
2

∣

∣

)

along each subpath (being entropy-conservative, the amount of en-

tropy dissipation is zero). How should we choose an appropriate subpath? To sim-
plify matters we consider the symmetric case where the entropy and conservative

variables coincide, B(v) = A(u) := fu(u). We let
{

uj

ν+ 1
2

}N

j=1
be the breakpoints

along the path of (approximate) solutions to the Riemann problem. It is well

known that each subpath is directed along the eigensystem of A
(

uj

ν+ 1
2

)

, that is,

uj+1

ν+ 1
2

− uj

ν+ 1
2

∼ rj

ν+ 1
2

, so that {wj ∼ rj

ν+ 1
2

, aj} is the normalized eigensystem of

A. With this choice, all but one of the terms on the right of (14) vanish to higher
order (in |∆uν+ 1

2
|) and the leading term governing entropy dissipation is given by

〈

rj

ν+ 1
2

, Q
j+ 1

2
,∗

ν+ 1
2

rj

ν+ 1
2

〉

≈
∫ 1

2

ξ=− 1
2

(

1

4
− ξ2

)

〈

∇uaj

(

u
j+ 1

2

ν+ 1
2

(ξ)
)

, rj

ν+ 1
2

〉

dξ.

The last expression captures the essence of the entropy-conservative schemes that

balance between entropy dissipation along j-shocks, where
〈

∇uaj(u(ξ)), rj

ν+ 1
2

〉

>

0, and the entropy production along j-rarefactions, where
〈

∇uaj(u(ξ)), rj

ν+ 1
2

〉

<

0.
To enforce entropy stability, we need to increase the amount of numerical viscos-

ity. The use of different subpaths allows us to stabilize rarefactions while avoiding
spurious entropy dissipation with shocks. Turning off the entropy production along

the rarefactions, leading to viscosity amplitude, q
j+ 1

2

ν+ 1
2

, acting along the j-wave,

(15) q
j+ 1

2

ν+ 1
2

=

∫ 1
2

ξ=− 1
2

(

1

4
− ξ2

)

〈

∇uaj

(

u
j+ 1

2

ν+ 1
2

(ξ)
)

, rj

ν+ 1
2

〉+

dξ.

Next, we note that if the path connecting uj

ν+ 1
2

and uj+1

ν+ 1
2

is chosen along the

(approximate) Riemann solution, then the integrand on the right of (15) does not
change sign. A simple upper bound of the entropy-conservative amplitude on the
right of (15) yields an entropy-stable Lax–Wendroff-type viscosity

(16)

∫ 1
2

ξ=− 1
2

(

1

4
− ξ2

)

〈

∇uaj(u(ξ)), rj

ν+ 1
2

〉+

dξ ≤ 1

4

[

aj

(

uj+1

ν+ 1
2

)

− aj

(

uj

ν+ 1
2

)]+

〈

`
j

ν+ 1
2

,∆vν+ 1
2

〉 .
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Corollary 0.4. (Tadmor 2003) The following Lax–Wendroff-type difference
scheme is a second-order accurate entropy-stable approximation of (3):

(17)
d

dt
uν(t) = − 1

2∆xν

[

N
∑

j=1

〈

f
(

uj

ν+ 1
2

)

+ f
(

uj+1

ν+ 1
2

)

, rj

ν+ 1
2

〉

`
j

ν+ 1
2

−
〈

f
(

uj

ν− 1
2

)

+f
(

uj+1

ν− 1
2

)

, rj

ν− 1
2

〉

`
j

ν− 1
2

]

+
1

8∆xν

[

N
∑

j=1

[

aj

(

uj+1

ν+ 1
2

)

−aj

(

uj

ν+ 1
2

)]+

`
j

ν+ 1
2

−
N

∑

j=1

[

aj

(

uj+1

ν− 1
2

)

− aj

(

uj

ν− 1
2

)]+

`
j

ν− 1
2

]

.

No artificial dissipation is added in shocks and in particular, it has the desirable
property of keeping the sharpness of shock profiles.
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